máj 5, 2021
10 Views
0 0

Magyar kutatók vizsgálják a csillagok keletkezését

Written by

Az ELKH Csillagászati és Földtudományi Kutatóközpont Konkoly Thege Miklós Csillagászati Intézete a Bécsi Egyetemmel és a Genfi Egyetemmel közösen tesz kísérletet arra, hogy újraértelmezze a fiatal csillagok osztályozását, valamint a csillag- és bolygófejlődés korai szakaszait. Az Európai Unió Horizon 2020 kutatási és innovációs keretprogramján keresztül támogatott NEMESIS (Novel Evolutionary Model for the Early Stars with Intelligent Systems – azaz a csillagfejlődés korai szakaszának újszerű modellezése intelligens rendszerekkel) elnevezésű projekt elsődleges célja, hogy létrehozza az eddig ismert fiatal csillagokat tartalmazó legnagyobb adatbázist. Emellett a kutatók a mesterséges intelligencia felhasználásával olyan csillagkeletkezési modellt terveznek megalkotni, amely túlmutat a jelenleg használt elméleteken, és

képes teljesebb magyarázatot adni a modern csillagászati eszközökkel megfigyelt jelenségekre.

A mesterséges intelligencia évtizedeken keresztül a sci-fi regények kedvelt kifejezése volt, de a mindennapok során ritkán lehetett vele találkozni. Ez a helyzet viszont mára drámai fordulatot vett: manapság körülvesz minket a mesterséges intelligencia, elég csak az önvezető autókra, a telefonok és weboldalak arcfelismerő funkciójára, vagy a személyre szabott internetes reklámokra gondolni. Ahhoz azonban, hogy a mesterséges intelligencia és a gépi tanulás megbízhatóan tudjon működni, nagy mennyiségű adatra van szükség, amelyekből kirajzolhatók a különböző trendek, mintázatok. Az elmúlt évtizedekben a csillagászok számára is egyre több adat vált elérhetővé, és ez az adatmennyiség mára olyan nagy mértékűre nőtt, hogy hétköznapi módszerekkel az már kezelhetetlen, így szükségessé vált a „big data”, a „machine learning” és a „deep learning” módszerek alkalmazása a csillagászatban is.

Az arcfelismerés esetében a különböző algoritmusok magát az arcot fordítják le a matematika nyelvére, azaz számokra, amik megadják például az arc bal és jobb széle közötti, valamint az állcsúcs és a fejtető közötti távolságot, illetve ezek arányát, a szemek távolságát a fültől stb.

„A csillagászatban használt minták is hasonlók a matematika nyelvén, azonban ezek a csillagok olyan mérhető jellemzőiből adódnak, mint például a különböző hullámhosszokon kibocsátott fényességük, ezek aránya, a bennük fellelhető kémiai elemek, vagy a környezetük jellegzetességei. A fiatal csillagok például olyan környezetben találhatók meg, ahol sok a csillagközi por és gáz, hiszen ezekből alakultak ki nem is olyan régen, persze kozmikus időskálán mérve az időt” – mondja dr. Marton Gábor, a Csillagászati Intézet tudományos munkatársa, a NEMESIS projekt hazai koordinátora.

A csillagkeletkezés különböző szakaszainak rendszerszintű osztályozása csak az 1980-as években vált lehetővé,

az első infravörös megfigyeléseknek és elméleti számításoknak köszönhetően. Ma – több mint 25 évvel azután, hogy a fiatal csillagok besorolását először értelmezték egymással összefüggő fejlődési környezetben – már lényegesen több, újabb és jobb adat áll rendelkezésre. Emellett a kutatóknak lényegesen fejlettebb számítási eszközei és módszerei vannak, amelyek segítségével újraértékelhetik a kezdeti feltevéseket, és új szempontokat, feltételrendszereket határozhatnak meg.

Az ábrán az NGC1333 csillagkeletkezési régió látható a fény különböző hullámhosszain: (a) látható, (b) közép-infravörös, (c) távoli infravörös, (d) és (e) szub-milliméteres. A különböző hullámhosszú felvételek segíthetnek elkülöníteni az egymástól eltérő korú fiatal objektumokat. Minél fiatalabb egy objektum, annál hidegebb, és annál jobban látszik a hosszabb hullámhosszú tartományban készült felvételeken. A megfigyelt hullámhossz az a) ábrától az e) irányába nő (egyre melegebb tartományok láthatók).

Dr. Odysseas Dionatos, a Bécsi Egyetem kutatója, egyben a konzorcium koordinátora így nyilatkozott: „a legfrissebb bizonyítékok szerint a bolygók a csillagok kialakulásával egy időben elkezdenek formálódni, vagyis a csillag- és a bolygófejlődés nem két egymást követő szakasz, hanem gyorsan, egy időben zajló esemény. A fiatal csillagok mindenre kiterjedő paramétereinek meghatározásában nagy segítséget nyújtott a csillagok sugárzásának hullámhossza alapján működő osztályozás, azonban nagy benne a bizonytalansági tényező a konkrét fejlődési időskálákat illetően. A kutatás során újraértelmezzük a jelenlegi klasszifikációs sémát és a jellegzetes, kiugró időskálákat. Felügyelt és felügyelet nélküli gépi tanulási módszerekkel fogjuk feldolgozni az elérhető adatokat annak érdekében, hogy választ tudjunk adni a csillag- és bolygókeletkezés legaktuálisabb kérdéseire.”

Hogy miért most aktuális a téma? „Ennek egyik oka az eddig hiányzó nagyskálájú optikai–infravörös égboltfelmérés volt. Az elmúlt évtizedben ez megváltozott, az olyan teljes égboltfelméréseknek köszönhetően, mint amilyen a Gaia, a 2MASS vagy a WISE projekt. A különböző fejlődési időskálák leírásához populációs statisztikákra van szükség, amihez elengedhetetlen fontosságú a nagy elemszámú minta. A Gaia űrtávcső az eddigi működése során 1,8 milliárd objektumot detektált, amelyek között nagy számban fordulhatnak elő fiatal csillagjelöltek” – magyarázta dr. Marc Audard, a Genfi Egyetem munkatársa.

Főkép: A Rozetta-köd a Herschel űrtávcső szemével távoli infravörös fényben (70, 160 és 250 μm-es hullámhosszon). A diffúz porba beágyazott fényes pöttyök mindegyike egy-egy kialakulófélben lévő fiatal csillag. A köd kékes árnyalatú részei hidegebbek, míg a vöröses részek melegebbek. A Rozettához hasonló sűrű, hideg csillagközi felhők a NEMESIS projekt elsődleges célpontjai, hiszen ezekben találhatók meg a legfiatalabb csillagmagok.

24.hu/tudomany/2021/05/05/mesterseges-intelligencia-csillagok-keletkezese-nemesis-horizon-program-csillagaszat/

Komment írása

Article Categories:
24.hu · Tudomány
banner

Vélemény, hozzászólás?